Spin-label saturation-recovery EPR at W-band: applications to eye lens lipid membranes.
نویسندگان
چکیده
Saturation-recovery (SR) EPR at W-band (94 GHz) to obtain profiles of the membrane fluidity and profiles of the oxygen transport parameter is demonstrated for lens lipid membranes using phosphatidylcholine (n-PC), stearic acid (n-SASL), and cholesterol analog (ASL and CSL) spin labels, and compared with results obtained in parallel experiments at X-band (9.4 GHz). Membranes were derived from the total lipids extracted from 2-year-old porcine lens cortex and nucleus. Two findings are especially significant. First, measurements of the spin-lattice relaxation times T1 for n-PCs allowed T1 profiles across the membrane to be obtained. These profiles reflect local membrane properties differently than profiles of the order parameter. Profiles obtained at W-band are, however, shifted to longer T1 values compared to those obtained at X-band. Second, using cholesterol analog spin labels and relaxation agents (hydrophobic oxygen and water-soluble NiEDDA), the cholesterol bilayer domain was discriminated in membranes made from lipids of the lens nucleus. However, membranes made from cortical lipids show a single homogeneous environment. Profiles of the oxygen transport parameter obtained from W-band measurements are practically identical to those obtained from X-band measurements, and are very similar to those obtained earlier at X-band for membranes made of 2-year-old bovine cortical and nuclear lens lipids (M. Raguz, J. Widomska, J. Dillon, E.R. Gaillard, W.K. Subczynski, Biochim. Biophys. Acta 1788 (2009) 2380-2388). Results demonstrate that SR EPR at W-band has the potential to be a powerful tool for studying samples of small volume, ∼30 nL, compared with the sample volume of ∼3 μL at X-band.
منابع مشابه
Spin-Label EPR for Determining Polarity and Proticity in Biomolecular Assemblies: Transmembrane Profiles
Hyperfine couplings and g-values of nitroxyl spin labels are sensitive to polarity and hydrogen bonding in the environment probed. The dependences of these electronic paramagnetic resonance (EPR) properties on environmental dielectric permittivity and proticity are reviewed. Calibrations are given, in terms of the Block-Walker reaction field and local proton donor concentration, for the nitroxi...
متن کاملSpin-labelled vacuolar-ATPase inhibitors in lipid membranes.
Two spin-labelled derivatives of the 5-(2-indolyl)-2,4-pentadienoyl class of inhibitors of the vacuolar ATPase have been synthesised and their EPR properties characterised in phospholipid membranes. One spin-labelled inhibitor is the amide derivative of pentadienic acid and 4-amino-TEMPO (INDOL6), and the other is the 3-hydroxymethyl-PROXYL ester (INDOL5). The response of the EPR spectra to the...
متن کاملOxygen permeation profile in lipid membranes: comparison with transmembrane polarity profile.
Permeation of oxygen into membranes is relevant not only to physiological function, but also to depth determinations in membranes by site-directed spin labeling. Spin-lattice (T(1)) relaxation enhancements by air or molecular oxygen were determined for phosphatidylcholines spin labeled at positions (n = 4-14, 16) of the sn-2 chain in fluid membranes of dimyristoyl phosphatidylcholine, by using ...
متن کاملProtein rotational mobility and lipid fluidity of purified and reconstituted cytochrome c oxidase.
The rotational mobility of spin-labeled bovine heart mitochondrial cytochrome e oxidase in purified form, and incorporated into lipid vesicles was studied. A rigidly attached short chain maleimide spin label permitted the measurement of the protein’s overall rotational mobility by saturation transfer electron paramagnetic resonance. A long chain maleimide spin label was used to detect he fluidi...
متن کاملAnisotropic motion effects in CW non-linear EPR spectra: relaxation enhancement of lipid spin labels.
Continuous-wave (CW) EPR measurements of enhancements in spin-lattice (T(1)-) relaxation rate find wide application for determining spin-label locations in biological systems. Often, especially in membranes, the spin-label rotational motion is anisotropic and subject to an orientational potential. We investigate here the effects of anisotropic diffusion and ordering on non-linear CW-EPR methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance
دوره 212 1 شماره
صفحات -
تاریخ انتشار 2011